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MATHEMATICAL PROOF AND REASONING 4

By the end of this chapter, you should be able to:

	 prove simple results involving numbers (ACMSM061)

	 express rational numbers as terminating or eventually recurring decimals and vice 
versa (ACMSM062)

	 prove irrationality by contradiction for numbers such as 2  and log 52
(ACMSM063)

	 develop the nature of inductive proof including the ‘initial statement’ and 
inductive step (ACMSM064)

	 prove results for sums, such as n n n n1 4 9... ( 1)(2 1)
6

2+ + + = + +   for any positive 
integer n (ACMSM065)

	 prove divisibility results, such as 32n+4 – 32n  is divisible by 5 for any positive integer 
n. (ACMSM066)

Syllabus Checklist

4.1  INTRODUCTION TO NUMBER PATTERNS AND DEFINITIONS

You will be familiar with the following sets of numbers:

Natural Numbers	 N = {1,2,3,4,5,6...}

Whole Numbers 	 W = {0,1,2,3,4,5,...}

Integers		  I = {...,−4,−3,−2,−1,0,1,2,3,4,...}

Prime Numbers	 P = {2,3,5,7,11,13,...}

Note here that the dots in a set (i.e. ...) normally mean “and so on continuing with the same 
pattern”, but in the case of the set P it means continue on listing the prime numbers as there is 
no known pattern.
 
A conjecture is the expression of an opinion without sufficient evidence. Conjectures may be true 
or false. Only one counter example is necessary to prove that a conjecture is false.

An axiom is a statement that is accepted as being true without proof.

A theorem is a statement that has been proven to be true.

A proposition is a statement that can only be either true or false.

A definition is a statement of what we agree about something. For example, one definition of an 
even number is:

An even number is a natural number which has 2 as a factor,

		  ∴ E = {2,4,6,8,...}  is the set of even numbers.
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An odd number could be defined as a natural number which does not have 2 as a factor,

		  ∴ O = {1,3,5,7,9,...} is the set of odd numbers.

(For the purposes of this text the author has chosen not to include zero in the set of even numbers 
and also not to include the negative integers in the sets E and O.)

If n  is a natural number (i.e. n ∈ N ), then 2n is always even and 2n + 1 or 2n – 1 is always odd. 
The sequence of consecutive natural numbers starting with n is

		  n,  n + 1,  n + 2,  n + 3, ...

The sequence of consecutive even numbers starting with 2n for any n ∈ N is
		  2n,  2(n + 1),  2(n + 2),  2(n + 3), ...

The sequence of consecutive odd numbers starting with 2n – 1 for any n ∈ N  is
		
		  2n – 1, 2n + 1, 2n + 3, 2n + 5, ...

A terminating decimal is a decimal number that has digits that do not go on forever (e.g. 0.25 
has two digits before terminating; 2.0451 has four digits before terminating).

A recurring decimal is a decimal number that has digits that recur forever in a recognisable 

pattern (e.g. 1
3

= 0. 3 where the 3s recur forever; 1
11

= 0.09
___

 
where the ‘09’ digits will recur 

forever).

4.2  CONVERTING RECURRING DECIMALS TO FRACTIONS

Worked Example 1

Convert the following recurring decimals to fractions

(a)	 0. 4 		  (b)	 0.08
___

		  (c)	 0.58 3

Worked Solutions

(a) 	 Step 1	 Let x = 0. 4

	 Step 2	� Multiply both sides of the equation in Step 1 by 10 (this is because 	 there is one 
zero in 10 and one repeating digit)

		  10x = 4. 4

	 Step 3 	Subtract x from both sides of the equation and simplify

		  10x – 1x = 4. 4 –0. 4

		            9x = 4

		            x = 4
9

(b) 	 Step 1	 Let x = 0.08
___

	 Step 2	� Multiply both sides of the equation in Step 1 by 100 (this is because there are two 
zeroes in 100 and two repeating digits)

		  100x = 8.08
___
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	 Step 3 	Subtract x from both sides of the equation and simplify

		  100x – 1x = 8.08
___

–0.08
___

		           99x = 8

		              x = 8
99

(c) 	 Step 1	 Let x = 0.583

	 Step 2	� Multiply both sides of the equation in Step 1 by 10 (this is because 	 there is one 
zero in 10 and one repeating digit)

		  10x = 5.8 3
	 Step 3 	Subtract x from both sides of the equation and simplify

		  10x – 1x = 5.8 3–0.583

		            9x = 5.25

		             x = 5.25
9

	 Step 4	 Multiply answer by 100
100

to remove two decimal places, and simplify

		
x = 525

900

∴ x = 7
12

4.3  CONVERTING RECURRING DECIMALS TO FRACTIONS

Worked Example 2

Convert the following fractions to decimals and indicate appropriately any recurring digits

(a) 	 8
9

		  (b)  	 9
22

Worked Solutions

(a)	 Step 1	 Prepare the fraction for short division			  9 8

	 Step 2	 Begin by dividing 9 into 8 (which can’t be 	
		  done evenly). Place a zero above the 8, 
		  followed by a decimal point. Also place a 		  9 8.0

0.

		  decimal point after the 8 followed by a 
		  decimal point.

	 Step 3	 Now divide 9 into 80 (which has been 		  9 8.080
0.88

		  created by the previous operations).
		  Place the dividend above the zero,
		  and write the remainder in front of another 
		  zero placed after the ‘80’.
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	 Step 4	 Continue this process until the pattern of 		  9 8.08080
0.888

		  recurring decimals appears 

	 Step 5	 Conclude by writing the decimal correctly 		  0. 8

(b)  	 Step 1	 Prepare the fraction for short division			  22 9

      	 Step 2	 Begin by dividing 22 into 9 (which can’t 	
		  be done evenly). Place a zero above the 9, 
		  followed by a decimal point. Also place a 		  22 9.0

0.

		  decimal point after the 9 followed by a 
		  decimal point.

	 Step 3	 Now divide 22 into 90 (which has been 		  22 9.020
0.40

		  created by the previous operations).
		  Place the dividend above the zero,
		  and write the remainder in front of another 
		  zero placed after the ‘90’.

	 Step 4	 Continue this process until the pattern of 		  22 9.020 0
0.409

		  recurring decimals appears 

	 Step 5	 Conclude by writing the decimal correctly 		  0.4 09
___

4.4  PROOFS USING ALGEBRA

Algebra can be used to prove if a conjecture is true or false.

Worked Example 3 

Conjecture: The sum of five consecutive odd numbers is a multiple of five.

Let 2n+1, 2n + 3, 2n + 5, 2n + 7, 2n + 9 represent five consecutive odd numbers.

	 2n+1+ 2n + 3 + 2n + 5 + 2n + 7 + 2n + 9 = 10n + 25
	 = 5(2n + 5)
∴5(2n + 5) is divisible by 5 and hence is a multiple of 5. Therefore the conjecture is true.

4.5  PROOF BY CONTRADICTION

Contradiction is a form of proof that establishes the truth or validity of a proposition. It achieves 
this by showing that the proposition’s being false would imply a contradiction.

Worked Example 4

Prove that 2 is irrational.

Step 1 	Assume that 2 is rational i.e. 2  = a
b

where the natural numbers a and b have 

	 no common factors besides 1 ( a
b

 has been cancelled down to the lowest terms). 

	 The aim of the proof is to contradict this assumption.

Step 2	 If 2 = a
b  

then 2 = a2

b2 and a2 = 2b2 which means that a2 is a multiple of 2.
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Step 3	� If a2 is a multiple of 2, then it needs to be shown that this means that a is also a multiple 
of 2.

	 i.e. Let a = 2n + 1
	 So 	a2 = 4n2+ 4n + 1
		  = 2(2n2+ 2n) + 1
		  = 2m + 1  where m = 2n2+ 2n
	 which means that a2 is not a multiple of 2. The reasoning then proceeds:
	 If a is not a multiple of 2 then a2 is not a multiple of 2 is true – which means that
	� If a2 is a multiple of 2 then a is a multiple of 2 is true, by the contrapositive method of 

reasoning outlined above.

Step 4	 If a is a multiple of 2, then a = 2d for some natural number d,

	 i.e. a2 = 4d2 	but a2 = 2b2

	 ∴ 2b2 = 4d2

	      b2 = 2d2

	� This means that b2 is a multiple of 2, and by the same line of reasoning above, b must also 
be a multiple of 2.

Step 5	� It has been shown that both a and b are multiples of 2 as they have the common factor 

of 2. This contradicts the original assumption that a
b

 have no common factors. So 2  

cannot be written as a fraction and hence 2 is irrational.

4.6  PROOF BY INDUCTION

A significant amount of mathematics involves the examination of patterns. Many of these 
patterns are concerned with generalisations about sequences and series.

Mathematical induction is a method of proof that is based in recursion, and it is used for proving 
conjectures which claim that a certain statement is true for integer values of some variable.

Let’s say we were interested in finding a generalisation to explain the sum of n odd numbers, 
starting at 1. If we tabulate our findings for the first 10 odd numbers and their partial sums, we 
have:

n 1 2 3 4 5 6 7 8 9 10

Tn 1 3 5 7 9 11 13 15 17 19

Sn 1 4 9 16 25 36 49 64 81 100

n2 12 22 32 42 52 62 72 82 92 102

The interesting thing here is that the last row of the table shows all integers n2, n≥ 1. Thus, the 
sum of all n odd numbers appears to be the square of n. In stating this, we have arrived at a 
conjecture – which is the first step in creating a theorem – but we may not know precisely why 
this is true.

The following worked exercise provides a precise mathematical statement of the result we are 
trying to prove.

Worked Example 5 (General Series)

Prove by mathematical induction that for all odd integers n 1 that

1 + 3 + 5 + 7 + ... + (2n – 1) = n2
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Worked Solution

1. 	� Initial step: We need to show that the hypothesis is true for a small value of n, e.g. n = 1. 
Substitute this value into the series. 

1 = 12

2. 	� Base step: We let n = k, which will assume that the statement will hold true for all values 
of n. After substituting n = k into the series, we assume that the hypothesis is true for  
n = k.

1 + 3 + 5 + ... (2k – 1) = k2           → 1( )

	 Assume that base step is true, i.e. statement is true for   n = k.

3. 	� Base induction step: We let n = k + 1, to show that the statement will remain true for 
all values of k and the very next value after k. Note that this is not simply a case of 
substituting k + 1 for n in the original statement; doing so would be making another 
assumption. Instead, we add the next term of the series to both sides of the statement 
created in the ‘base step’. This next term is 2(k + 1) –1.

	 Looking back at 1( ) , we can see that the series 1 + 3 + 5 ... (2k – 1) exists in 2( ) .

	 We thus substitute k2 for 1 + 3 + 5 + ... (2k – 1)

	 1 + 3 + 5 + ... (2k – 1) + [2(k + 1) –1] = (k+1)2

	 1 + 3 + 5 + ... (2k – 1) + (2k + 1) = (k+1)2    → 2( )
	 So  1 + 3 + 5 + ... (2k – 1) + (2k + 1) = (k+1)2

	 k2 + (2k + 1) = (k+1)2

	 k2 + 2k + 1 = k2 + 2k + 1
	 = R.H.S.

4. 	� Conclusion: Because we have proven that the LHS of the statement equals the RHS, we 
can conclude that the statement is true for all values of n = k + 1. Similarly, because the 
statement is true for all values of n = k + 1, it must also be true for all values of n = k. 
Therefore, the conjecture has been proven.

	 ∴ true for n = k + 1

	 ∴ true for n = k

	 ∴ conjecture is true.

Worked Example 6 (Divisibility)

Using mathematical induction, prove that 32n –1 is divisible by 8.

Worked Solution

1. 	� Initial step: We need to show that the hypothesis is true for a small value of n, e.g. n = 1. 
Substitute this value into the expression, and equate the expression to some multiple of 8.

	 Let 32n –1 = 8A for some integer A

	 32(1) –1 = 32 –1= 9 –1 = 8

	 ∴ this is a multiple of 8

	 ∴initial step is true for n = 1

2. 	� Base step: We let n = k, which will assume that the statement will hold true for all values 
of n. After substituting n = k into the statement, we assume that the hypothesis is true for 
n = k.
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32k –1 = 8A

32k  =  8A  + 1      → 1( )
Assume that base step is true, i.e. statement is true for   n = k.

3. 	� Base induction step: We let n = k + 1, to show that the statement will remain true for 
all values of k and the very next value after k. Here we substitute  n = k + 1 into the 
statement, but we do not equate it to a multiple of 8. Instead, we will manipulate the 
expression so that something from (1) can be used to help prove the conjecture.

	 32(k+1) –1 = 32k+2 –1

	 = 32k. 32 –1

	 = 9(32k) – 1

	 = 9(8A  + 1) –1  [sub. 1( )  for 32k]

	 = 72A + 9 – 1

	 = 72A + 8

	 = 8(9A + 1)

This statement is a multiple of 8, as anything multiplied by 8 must also be divisible by that 
same number.

4.	� Conclusion: Because we have proven that the statement is a multiple of 8, we can conclude 
that the statement is true for all values of n = k + 1. Similarly, because the statement is 
true for all values of n = k + 1, it must also be true for all values of n = k. Therefore, the 
conjecture has been proven.

	 ∴ true for n = k + 1

	 ∴ true for n = k

	 ∴ conjecture is true.
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PROBLEMS TO SOLVE

A conjecture is true only if it is always true. If it is false, give a counter example, otherwise 
give one example of when it is true.

  1.	 The number 1 more than square of an even integer is always a prime number.

  2.	 Every number has an even number of factors.

  3.	 Every factor of an odd number is odd.

  4.	 Every factor of an even number is even.

  5.	 The product of two consecutive counting numbers is a multiple of 4.

Prove the following conjectures algebraically.

  6.	 The sum of three consecutive even integers is always a multiple of three.

  7.	 The sum of three counting numbers in an arithmetic progression is a  
multiple of three.

  8.	 The product of three consecutive even numbers is always a multiple of eight.

  9.	 If you multiply two odd numbers the result is always an odd number.

10.	  If x2 is an odd number then x is an odd number.

11.	 Express the following recurring decimals as fully simplified fractions:

	 (a)	 0. 6

	 (b) 	 0. 7

	 (c) 	 0.1 6

	 (d) 	 0.09
___

	 (e) 	 0.41 6

	 (f) 	 0. 428571
_________

12.	 Convert the following fractions to decimals, clearly indicating which (if any) 
digits are recurring:

	 (a) 	 5
6

	 (b) 	 4
9

	 (c) 	 1
15

	 (d) 	 7
30
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	 (e) 	 9
22

	 (f) 	 5
13

13.	 Prove that 3 is irrational.

14.	 Prove that 5 is irrational.

15.	 Prove that log2 5  is irrational.

16.	 Prove that log3 7  is irrational.

17. 	 Use mathematical induction to prove that for all positive integers n:

	 (a)	 2 + 4 + 6 + ...+ 2n = n(n + 1)

	 (b)	 1 + 2 + 3 + ... + n = 1
2

n(n + 1)

	 (c)	 1 + 4 + 7 + ... + (3n – 2) = 2(3n − 1)
2

	 (d)	 1 + 2 + 22 + ... + 2n = 2n+1 – 1

	 (e)	 1 x 2 + 2 x 3 + 3 x 4 + 4 x 5 + ...+ n(n + 1) = 1
3

n(n + 1)(n + 2)

	 (f)	 1
1x4

+ 1
4x7

+ 1
7x10

+ ... + 1
(3n − 2)(3n + 1)

= n
3n + 1

 

18.	 Use mathematical induction to prove the following divisibility tests for all 
positive integers n:

	 (a)	 9n – 3 is a multiple of 6

	 (b)	 34n – 1 is divisible by 80

	 (c)	 5n + 3 is divisible by 4

	 (d)	 n(n2 + 2) is divisible 3

	 (e)	 52n – 1 is a multiple of 24

	 (f)	 n3 – n is a multiple of 6, n is a positive integer n≥ 2

19. 	 Using mathematical induction, prove that for all n ≥ 1

	
xn+1 − 1

x − 1
= 1 + x + x2 + ... + xn           where x ≠ 1 .

20.	 Using mathematical induction, show that for any positive integer n, 

	 a + ar + ar2 + ...+ arn = a(rn+1 − 1)
r − 1

             where r ≠ 1.
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