Tearning about line graphs

Find a brick wall at your school. Use a metre ruler and a piece of chalk to mark 1 metre in height on the wall. Count how many rows of bricks there are in 1 metre. Use this information to complete the table.

Height of wall (m)	Rows of bricks
0	
1	
2	
3	
4	

Answers will vary.

1. Give your graph a title.
2. Plot the points from your table with a small dot on the graph. Join the dots to each other using a ruler.

3 Extend the line on the graph and use this to work out how many rows of bricks would be in the wall if it was 7 metres in height.

4. If the wall had 64 rows of bricks, how high would it reach?

5 From the graph, calculate the width of each brick in the wall.

6 Do you expect that all brick walls would produce the same graph? Give a reason.

Different sized bricks will give different graphs.

Find another brick wall made with different bricks. Complete the above activity, graphing the values for this second brick wall in a different colour. Compare the two graphs. How are they the same? How are they different?

1. The length of a baby was recorded over the first 6 months of its life. The results are shown in the table. Graph this data on the set of axes provided. Give the graph a title.

Age of baby	Length of baby
1 month	57 cm
3 months	63 cm
4 months	65 cm
6 months	70 cm

a Explain why this graph should not have a dot where the two axes meet.
\qquad be at length Ocm .
b Extend the line of your graph and use it to find the approximate length of the baby at birth.

At birth, the baby would have been approximately 55 cm long.

The amount the Wilson family paid for electricity in 2008 is shown in the table.

Date	Electricity bill
March 2008	$\$ 225.00$
June 2008	$\$ 240.50$
September 2008	$\$ 241.00$
December 2008	$\$ 265.50$

a Give the graph a title.
b Label the axes and complete the scales.
C Graph the data from the table and connect each point by a line.

d Does it make sense for the point where the axes meet to be included in the data? If so, add it to the graph.

Data

Line graphs

1 Use the graph to answer the questions.
a What data is this graph displaying?
\qquad
\qquad
b Suggest a reason for the large result for March 2010.

Cars left unattended during the state election

C The value for July 2010 was 2250. Add this to the groph.
d Given this data, would you say the level of this crime is rising, falling or staying constant? Give a reason for your answer.

Rising. It has gone up between January and July.
and may continue increasing.

Use the internet to find some other crime statistics for your local area and graph them using a spreadsheet. Is crime in your area on the rise?

2 Indicate with a tick (\mathcal{J}) which of the following should be represented on a line groph.
 The number of people that attend football matches each season The cost of milk over the last 100 years
Height against weight The temperature of water as it is heated
\qquad The favourite cartoon characters of Year 6 students Travel destinations of Australians
\qquad Profit against the number of items sold Number of lollies eaten against number of packets opened

How is data that is graphed in a line graph different to data that is graphed in a column or sector graph?

The data is always numerical.

Constructing pie (sector) graphs

Construct pie (sector) graphs from the following data.
(1) The favourite ice-cream flavours of 6 students

41

Chocolate	35%
Chocolate chip	33%
Strawberry	13%
Vanilla	9%
Rainbow	6%
Other	4%

Key:
Students answers will vary

2 Seafood dishes ordered at a local restaurant

	Dish	Number ordered	Percentage
	Seafood paella	2	$\frac{2}{36} \times 100=5.6 \%$
	Fish 'n' chips	19	$\frac{19}{36} \times 100=52.7 \%$
	Crab cakes	10	$\frac{10}{36} \times 100=\underline{27.7} \%$
Students answers will vary	Total	36	100%

Answer may vary due to rounding

Misleading graphs

Look at each of the graphs below. In each graph, identify one feature that makes the graph misleading, and explain why it is misleading.
(1) Pets owned

Understanding the key
could be difficult
(3)

\qquad
\qquad
\qquad
(2) Total days absent from school

Bars are of various widths
\qquad
\qquad
(4. Fancy-dress theme preferences

Under the Sea. with 53\%, is taking
up a too great proportion of the circle.

Constructing stem and leaf plots

Use the data provided to complete the stem and leaf plots.
(1) The numbers in bold have been placed on the stem and leaf plot for you. Place the other numbers into the correct positions.

			6	0	2	3				
			7	5	8					
Data:										
106	84	60	8	1	4	8	8			
75	62	105	9							
112	117	63								
78	88	117	10	5	6					
11781	88	113								
	117	117	11	2	3	7	7	7	7	7

2. Place the data below into the stem and leaf plot

			19	0	2			
Data:			20	3	3	5	7	8
231	226	207	21	8				
190	209	220	22	0	0	0	6	8
232	219	203	22	0	0	0	6	8
218	220	208	23	1	8	4		
205	220	228						
192	203	234	24					

3 Use the data below to construct a stem and leaf plot.

Data:		
300	293	281
289	294	302
283	288	314
257	307	299
301	312	297
281	292	286

| 25 | 7 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 28 | 1 | 1 | 3 | 6 | 8 | 9 |
| 29 | 2 | 3 | 4 | 7 | 9 | |
| 30 | 0 | 1 | 2 | 4 | 7 | |
| 31 | 2 | | | | | |
| | | | | | | |

Samples and populations

1 Identify the population and an example of a sample that could be collected to answer each of these questions
a How many mature fish are in a large lake?
Population:
Fish in the lake
Sample:
Fish caught by a fishing boat in one day
b What insects live in your backyard?
Population: Insects found in your backyard
Sample:
Insects caught in a box left out overnight
C Should a new skate park be built in your suburb?
Population:
People who live in your suburb
Sample:
Survey sent to every house in the suburb
d Which dog breed is the most popular in Australia?
Population:
Dog breeds found in Australia
Sample:
Survey of people attending a dog show
2. For each situation listed below decide if a census or a sample is the most appropriate way to collect the data required.
a The average number of apples on a tree:
b The number of grains of rice in a 100 g packet:
C A change to Australia's constitution:
d The number l song this week in Australia:
e The most watched show on TV at 7:30 p.m. Friday:

Sample
Sample
Census
Census
Census

3 Are the samples that have been taken in each situation below appropriate? Why? Why not?
a How should Year 6 celebrate their graduation?
Sample: Parents present at a 'Parents and Friends' meeting.
No-should ask the students, not their parents.
b What is the best children's book of the year?
Sample: Librarians from public libraries.
No-should ask people who actually read children's books.

