

Homework Program

Monique Miotio Tracey MacBeth-Dunn

\qquad
\qquad
\qquad
\qquad

For 1-3, complete the sentence.

1
[Definition]

2
[Definition]
${ }_{\text {[Definition] }}^{3}$
When a survey covers the entire group, it is called a \qquad .
A portion of the entire group selected for the purpose of studying a characteristic of that group is called a \qquad .
In statistics, an entire group with at least one characteristic in common is called a
\qquad -

For 6-7, state whether the data is categorical or numerical.
$\begin{array}{ll}6 & \text { A supermarket records the number of } \\ \text { [Data type] } & \begin{array}{l}\text { loaves of bread it sells each day. }\end{array}\end{array}$

For 8-9, state whether the categorical data is ordinal or nominal.

8 The income categories low, medium [Categorical data type] and high.

9 [Categorical data type]

The colours of cars in a car yard.
\qquad

For 10-11, state whether the numerical data is continuous or discrete.

10
[Numerical
data type]

The shoe sizes of a group of toddlers.

11
[Numerical data type]

The heights of a group of toddlers.

For 12-14, Susan is conducting a survey of what the students at her school think of the changes to the school uniform policy. She decides to do a sample where the proportion of students in each year asked is the same as the proportion of students in each year.

12 What sort of sample is this?
[type of sample]

13 Susan decides to do a sample of
[Stratified
sampling]
75 students. Complete the table below to show the number of students in each year in the sample.

Embecca High School		
Year	Number of students in school	Number in Sample
7	240	
8	191	
9	198	
10	282	
11	214	
12	125	
Total		

For 16-17, Scott and John recorded the points that their basketball teams scored in the first 14 games of basketball:

Scott	45	37	54	26	42	46	46	45	52	57	38	55	57	48
John	44	36	28	70	29	37	43	29	36	28	46	28	38	26

16 Complete the following table.

[Analysis of data]

	Scott	John
Mean		
Median		
Highest score		
Lowest score		
Range		

17
[Analysis
of data]

of the two teams throughout the season?

\qquad

For 18-26, use the following weights, in kilograms, of 25 students.
$43,48,49,56,71,58,54,58,62,53,42,39,51$, $51,59,47,42,51,74,56,68,52,54,49,55$

18
 [Stem-and-
 leaf plot]
 Construct a stem-and-leaf plot of the data with groupings of 5 kg .

15 Paul wanted to do the same survey at [Type of his school but he decided to just go sample] through the school roll and get every 10th student to do the survey. What type of sampling is this? Is this considered to be a random sample?

14
[Stratified
sampling]
Susan found out that there were only 60 boys in Year 9 . How many boys should she survey in Year 9 if she decided to factor this into her calculations?
\qquad

19
[Frequency
table]
Complete the class interval, tally and frequency (f) columns below.

Class interval (kg)	Tally	f	cf
35-<40	\|		
40-<45	III		
	IIII		
	Total		

Fill in the cumulative frequency ($c f$) column in the table in 19.

For 23-25, use the table in 19.

23 What percentage of students weighed

24 In which class interval would you find [Analysis
[Analysis of data] 65 kg or more?
\qquad the 50th percentile.

20
[Histogram]
Draw a histogram to represent this data.
Weight of Year 10 students

21 What is the advantage of the stem-and-
[Stem-and-
leaf plot]
leaf plot over the histogram in this instance?

For 26-30, use these survey results, where x is the number of weeks' holiday taken.

\boldsymbol{x}	\boldsymbol{f}	$\boldsymbol{f} \times \boldsymbol{x}$
1	5	
2	4	
3	1	
4	9	
5	3	
6	2	
7	1	
8	2	
9	0	
10	3	
Total	30	

26 Complete the third column $(f \times x)$ in the table.

27 Calculate the mean of the number of

28 What is the modal number of weeks' weeks' holiday taken, to 1 decimal place
\qquad holiday?

Find the median number of weeks' holiday.
\qquad

True or false? The majority of people surveyed took fewer than 5 weeks' holiday.
\qquad

Data 2

Name: \qquad Due date: \qquad ./........../. /...........

For 1-4, Jessica owns a strawberry farm. She wanted to know which growing conditions were better for her strawberries. She planted 20 seedlings in two different patches and then recorded the total number of strawberries that each plant produced in its second season.
Patch A: 41, 43, 43, 43, 43, 44, 44, 44, 45, 45 $45,46,47,47,49,49,49,50,51,52$
Patch B: $6,28,33,33,33,34,36,37,38,44$, $46,46,46,47,49,48,49,49,58,60$

1 Calculate the mean for each patch.
[Mean]
[Median]
[Range]
Calculate the range for each patch.

4 What conclusion could Jessica make
[Analysis of data] concerning the better patch for the strawberries? Explain.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
7
[Mean]

There was a mistake in recording the data. The 11 should have been a 31 . What effect would this have for each of the values calculated in question $\mathbf{5}$? Explain, writing your answers in the table in question 5.

Kim wants to get an A in history. She knows that to get an A she needs at least a 90% average in her test results. She has scored $85,94,84$ and 88 in the first four tests. With one test to go, is it possible for her to get an A overall? If so, what will she need to score in her last test?

For 8-10, match the following diagrams and names to the most appropriate description.
Negatively skewed
Positively skewed
Symmetrical

B

C

Draw a sketch of a distribution that is bi modal.

For 13-15, a lolly manufacturer claims that the average number of lollies in each packet is 56 . Peter doesn't believe this claim so he takes a sample of doesn't believe this claim so he takes a sample of
the lollies and records how many are in each packet. He records his findings in the histogram below.

8
[Distribution:
[Distribu
shape]
The results of an exam that was really easy and most students did well.
\qquad
${ }^{9}$ Distribution:
shape]
The shoe sizes of all of the students in Year 9.

14
data]

[Mean]

10 The ages of people at a day-care centre.
[Distribution: \qquad
shape]

$$
\begin{array}{ll}
11 & \text { A data set is said to be bi modal. } \\
\text { [Bi modal] } & \text { Explain what this means. }
\end{array}
$$

Calculate the mean of his sample.

What can Peter conclude about the manufacturer's claim from his sample? Explain.
\qquad
\qquad
\qquad
\qquad
\square

15
[Appropriate
sample]

Write two questions that you would need to ask Peter to determine if his findings are fair.
\qquad

Represent this data as a histogram.
[Histogram:
draw]

Score	Frequency
8	7
9	10
10	6
11	4
12	2
13	0
14	1

18
[Distribution]
True or false? The heights of the girls are evenly distributed.
\qquad

19 True or false? The heights of the boys [Distribution] are positively skewed.

Find the median height of the boys.
\qquad

21
[Mean] [Compare data sets]

24 Write a short statement comparing the
Calculate the mean height of the boys.
\qquad

Find the median height of the girls.
\qquad

Calculate the mean height of the girls.
\qquad heights of the boys and girls.
\qquad
\qquad
\qquad
\qquad
\qquad

For 25-30, Saul wanted to know which method of teaching was better for a particular topic. He had two classes of 25 students with the same ability level so he decided to teach each class with a different method. The results for each of the students are recorded below.

Class A: $\quad 62,73,75,94,55,77,84,56,76$, $65,66,85,89,88,92,85,56,60$, $71,75,69,95,88,75,62,77$
Class B: $\quad 51,90,92,71,87,85,91,56,94$, $63,83,83,43,80,30,80,45,62$, $83,84,71,92,95,91,73,75$

25 Calculate the range in the marks for [Range] each class.
\qquad
[Analyse data]

Calculate the median in the marks for each class.
\qquad
\qquad

Comment on the shape of the distribution of each class.
\qquad
\qquad

What conclusion could Saul make concerning the better method for teaching that topic?

\square

\qquad
\qquad
\qquad
\qquad

27 Calculate the mean in the marks for
[Mean] each class.
Construct a back-to-back stem-and-leaf plot showing the marks for each class.
[Stem-and-
leaf plot]
leaf plot

Student comment	Guardian comment/signature	Teacher feedback

The good life

Name: \qquad Due date: \qquad ./.........../ /...........

Telemarketers Inc. has conducted an independent survey to compare the incomes of young people in the capital cities of two neighbouring countries, Roseland and Petunia. In each capital, 50 citizens aged between 20 and 30 were randomly selected and surveyed by phone. The cities are similar in size and the countries use the same currency, petals (*). Your company, StatisticiansRus, has been contracted to compare the incomes.

1
[Make a table]
The individual incomes of survey respondents in each city, rounded to the nearest 500 petals, are listed below.

Income (*) in Roseland sample				
12000	57500	14000	98000	92500
98500	74000	49000	61000	24000
18500	64000	46000	25500	97500
76000	96000	135000	24500	62000
7500	98000	37500	47500	93500
1500	45000	53500	56500	77000
92000	98500	46500	81000	36000
47000	24500	77500	51000	36500
98000	38000	97500	98500	36000
58500	44500	13000	19000	86000

Income (*) in Petunia sample				
98000	121500	134000	80000	75500
57000	72000	146500	116000	83000
58500	54500	131000	119500	70000
50500	87000	111000	145500	55000
145500	133500	87000	68000	100000
78500	120000	127500	132500	110500
50500	92000	138500	146000	135000
84000	142500	124500	92500	119500
71000	133500	68000	61000	90000
117500	110500	77500	98000	133000

a What was the minimum income:
i in Roseland? \qquad
ii in Petunia?
b What was the maximum income:
i in Roseland? \qquad
ii in Petunia? \qquad
c Group the data by completing the frequency tables below.

Annual income (*) in Roseland	Tally	Frequency (\boldsymbol{f})
$0-<15000$		
$15000-<30000$		
$30000-<45000$		
$45000-<60000$		
$60000-<75000$		
$75000-<90000$		
$90000-<105000$		
$105000-<120000$		
$120000-<135000$		Σ
$135000-<150000$		

Annual income (*) in Petunia	Tally	Frequency (f)
$0-<15000$		
$15000-<30000$		
$30000-<45000$		
$45000-<60000$		
$60000-<75000$		
$75000-<90000$		
$90000-<105000$		
$105000-<120000$		
$120000-<135000$		
$135000-<150000$		

What is the modal income class:
i for Roseland?
ii for Petunia?

e What is the median income for a resident:
i in Roseland?
ii in Petunia?
The distribution of incomes for the two cities can be represented using histograms.
[Draw a graph]
a Use your frequency table from question $\mathbf{1}$ to construct a histogram of the incomes for Roseland below.

b Use your frequency table from question $\mathbf{1}$ to construct a histogram of the incomes for Petunia below.

3 Use your histograms in question 2 to help you answer the following questions.
[Interpret graphs]

4
[Summarise
data]
a Describe the distribution of annual incomes for Roseland including the use of terms such as 'positive skew', 'negative skew', 'symmetric' or 'bi-modal', if appropriate.
\qquad

b Describe the distribution of annual incomes for Petunia including the use of terms such as 'positive skew', 'negative skew', 'symmetric' or 'bi-modal', if appropriate.
\qquad
\qquad
Use the grouped data to calculate the average income for young adults in each city.
a Complete each table below, using your frequency data from $\mathbf{1 c}$.

Annual income $(\boldsymbol{*})$ in Roseland	Midpoint (\boldsymbol{x})	Frequency (\boldsymbol{f})	Frequency \times midpoint ($\boldsymbol{x} \boldsymbol{f})$
$0-<15000$	7500	5	37500
$15000-<30000$		6	
$30000-<45000$			
$45000-<60000$		5	270000
$60000-<75000$		12	412500
$75000-<90000$	82500		
$90000-<105000$			
$105000-<120000$		$\Sigma f=$	$\Sigma x f=$
$120000-<135000$			142500
$135000-<150000$	142500		

Annual income $(*)$ in Petunia	Midpoint (\boldsymbol{x})	Frequency (\boldsymbol{f})	Frequency \times midpoint $(\boldsymbol{x} \boldsymbol{f})$
$0-<15000$	7500	0	0
$15000-<30000$			
$30000-<45000$		6	315000
$45000-<60000$		6	
$60000-<75000$		8	
$75000-<90000$	82500	6	
$90000-<105000$			
$105000-<120000$		7	
$120000-<135000$		$\Sigma f=$	$\Sigma x f=$
$135000-<150000$	142500		997500

b What is the weighted mean for incomes:
i in Roseland? \qquad
ii in Petunia?
5
Use the median and mean annual incomes you calculated in question $\mathbf{1}$ and question $\mathbf{3}$ to compare the typical annual income of residents in the two cities.
\qquad
\qquad

6
This table shows the cost of three everyday items in each capital city.

	1 litre full- cream milk (*)	50 litres unleaded fuel (*)	Big H hamburger (*)
Roseland	1.19	64.50	4.50
Petunia	2.87	127.50	8.95

What effect would this data have on your analysis? What other factors might you need to consider when comparing the incomes of young adults in these two cities. Explain.

Student comment	Guardian comment/signature	Teacher feedback

Ageing Australia

Name: \qquad Due date: \qquad ./.........../ /...........

What is the average age of a person living in your state? Is that changing? How does your state compare with the rest of Australia?

What is the distribution of ages of people living in your state? In this technology task you will use data and reports on the Australian Bureau of Statistics (ABS) website to investigate these questions.
<AW 03006c-insert cartoon
here if room at first pages. Author's suggestion: cartoon illo of a map of Australia with
1 To create an age distribution by gender for your state, [To show a
data value
for a column
in a column
chart, select
the column
and click on
'Add Data
Label'.] follow the steps below.

- On the ABS website, go to the page titled '3101.0 - Australian Demographic Statistics, Jun 2011' at this address: www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3101.0Jun \% 202011?OpenDocument (Alternatively, go to the ABS home page www.abs.gov.au, enter ' 3101.0 ' in the search box, click search and then click on the 'Downloads' tab.)
- Scroll to the bottom of the screen then right-click on the Excel icon for the data cube (data set) for Population by Age and Sex Tables. Select 'Save Target As' and save to an appropriate folder on your computer.
- Open the Excel file and look at the spreadsheet called 'Contents' which lists the tables in the workbook. Go to table 8 which is a table of data of estimated resident population, by age and sex at 30 June 2011. As you scroll down you will see tables for 'Males', 'Females' and 'Persons'.
- Open a new Excel spreadsheet and enter the data from the 'Persons' table for your state. Part of a sample layout is shown below.

Row/Col	B	C
1	Estimated resident population, by age-at 30 June 2011	
2		
3	Age (years)	Population
4	$0-4$	
5	$5-9$	
6	$10-14$	
7	$15-19$	
8	$20-24$	
9	$25-29$	
10	$30-34$	
11	$35-39$	
12	$40-45$	
13	$45-49$	
14	$50-54$	

- Now select the headings in row 3 and the data values and insert a column chart. You should see a column chart similar to the one below, with age intervals on the horizontal axis.

- Select the columns (all of them) on the chart and choose the format option for your version of Excel. You should see a 'Format Data Series' dialog box with 'Series options' that allow you to set the Gap width to 0 . Set the gap to 0 to remove the space between the columns and create a histogram. Change the border colour to a solid black line.
- Now insert an appropriate chart title. You can also delete the 'Population' legend. If you would prefer the age intervals to be vertical, reduce the chart area width until the labels move to the vertical.

Estimated resident population by age-at 30 June 2011

a Looking at your histogram, what is the modal age group for your state?
b How many people are there in this age group?
c Describe the shape of the age distribution for your state. (Hint: Consider questions such as: Is your distribution skewed or symmetrical? Is there an even distribution of number of various age groups?)

2

3

4
[Hyperlinks in
spreadsheets
can take you
to a webpage
if you are
connected to
the internet.]

Use table 3 of the data to help you answer the following questions about the median age of a person living in your state.
a What was the median age of a person living in your state as at 30 June 2011?
b What was the median age of a person living in Australia at 30 June 2011?
c How does the median age of a person in your state compare with the median age of a person in Australia?
d Describe what happened to the median age of a person living in your state during the period 2004 to 2011.
e Did the same thing happen across the country? Explain.

Use table 4 of the data to help you answer the following questions about the mean age of a person living in your state.
a What was the mean age of a person living in your state as at 30 June 2011?
b What was the mean age of a person living in Australia at 30 June 2011?
c How does the mean age of a person in your state compare with the mean age of a person in Australia at this time?
d Describe what happened to mean age of person living in your state during the period 1988 to 2011.
e Did the same thing happen across the country? Explain.

The population totals in the ABS tables are estimates. To find out the basis of the population data provided in the tables, follow these steps.

- Open the workbook you downloaded and go to the spreadsheet called 'Contents'.
- Click on the link called 'Explanatory notes' (in row 22) which should take you to a webpage on the ABS website.
a Use the information under 'Population and components of population change-Method of estimation' to help you complete this sentence.
Estimates of the resident population are based on \qquad , to which are added the \qquad and the number of Australian residents estimated to \qquad .
b Which group are not included in this count?
\qquad

Use your answers to questions $\mathbf{1 , 2}$ and $\mathbf{3}$ to answer the following.
a Complete: The median age for a person in my state on 30 June 2011 was \qquad years. The mean age for a person living in my state on 30 June 2011 was \qquad years.
b Circle the correct words: Based on the shape of the distribution of ages for 2011, the medium age is the most / either the median age or the mean age is a / the mean age is the most reliable indication of the typical age of a person in my state.
c Explain your answer to question \mathbf{b}.

Follow the steps in question 1 to create a histogram of the age distribution of persons in Australia as at 30 June 2011.

Compare the age distribution of your state with that of Australia. How are they similar? How are they different? Explain.

Student comment	Guardian comment/signature	Teacher feedback

