Length, area and volume 1

Name: \qquad Due date: \qquad
\qquad
\qquad

1
Select the best unit ($\mathrm{mm}, \mathrm{cm}, \mathrm{m}, \mathrm{km}$) to
[Length
units]

2
[Length
units]
Select the best unit (mm, cm, m, km) to 9 measure:
a the width of a DVD mm or cm
b the height of a person m or cm
Select the best unit (mm, cm, m, km) to measure:
a the length of the MCG m \qquad
b the distance from Alice Springs to Canberra km

For 3-5, convert the length to the unit indicated.
3 a $150 \mathrm{~mm}=\underline{15} \mathrm{~cm} \mathrm{~b} \quad 700 \mathrm{~cm}=\underline{7} \mathrm{~m}$
[Length
units]
4
[Convert
length units]
5
[Convert
length units]
b $\quad 73260 \mathrm{~mm}=\underline{73.26} \mathrm{~m}$
6
[Estimate
lengths]
Estimate the length of:
a a textbook

b	30 cm a medium-size car 5 m
	Estimates will vary.

For 7-10, calculate the perimeter.
7
[Perimeter]

13.5 m
$\begin{array}{ll}\mathbf{8} & \text { (Hint: some of the measurements are } \\ \text { [Perimeter] } & \text { missing.) }\end{array}$ missing.)

18 m
[Perimeter]

10
[Perimeter application]

11

[Perimeter application]

12
[Perimeter application]

13
[Perimeter application]

14

[Perimeter application]

366 cm
Max has a rectangular back yard with a perimeter of 26 m . If the yard is 9 m in length, what is the width? (Hint: draw a diagram.)

4 m
Aisha is making a square photo frame. If each side is 23.4 cm long, calculate the perimeter of the frame.

93.6 cm

The width of a kennel is 90 cm and the length is 1.5 m . Find the perimeter of the kennel. (Hint: draw a diagram.)
4.8 m

Scott walked around the perimeter of a national park. He walked 2.4 km in the morning and 1.78 km in the afternoon, but still had 3.6 km to go. What is the perimeter of the park?
7.78 km

For 15-16, calculate the circumference (to 1 decimal place). Use $\pi=3.14$.

\qquad

Find the circumference of a circle of
[Circumference] radius 5.4 m .
33.9 m

18 A trainer wheel on a child's bike has a
[Circumference] diameter of 10 cm . Find the circumference of the wheel. (Hint: draw a diagram.)

31.4 cm

Select the best unit ($\mathrm{mm}^{2}, \mathrm{~cm}^{2}, \mathrm{~m}^{2}$
19
[Area units] or km^{2}) to measure the area of:
a a sheet of paper \mathbf{b} an eraser

$$
\mathrm{cm}^{2} \quad \mathrm{~mm}^{2} \text { or } \mathrm{cm}^{2}
$$

Select the best unit $\left(\mathrm{mm}^{2}, \mathrm{~cm}^{2}, \mathrm{~m}^{2}\right.$ or km^{2}) to measure the area of:
a the classroom floor \mathbf{b} a country

$$
\underline{\mathrm{m}^{2}}
$$

m^{2}
$\mathbf{k m}^{2}$ \qquad
For 21-22, convert each area to the unit indicated.
21
[Convert
area units]
22
[Convert area units]
a $7.8 \mathrm{~cm}^{2}=780 \mathrm{~mm}^{2}$
b $2.1 \mathrm{~m}^{2}=\underline{2100000} \mathrm{~mm}^{2}$

For 23-27, calculate the area.

23

[Area
rectangle]

[Area application]

25
 [Area of triangle]

(10 cm
$25 \mathrm{~cm}^{2}$

26

[Area of triangle]

27
[Area of triangle]

28

[Area of parallelogram]
[Area
application]

30 What is the area of Nick's sign in square
$26 \mathrm{~mm}^{2}$

$$
\frac{\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
\vdots \\
1 \\
17 \mathrm{~mm} \\
1
\end{array}\right]}{\frac{1 m m}{}}
$$

$165 \mathrm{~mm}^{2}$
Lian wants to plant lawn in her backyard, which is 12 m long and 4 m wide. Calculate the area of lawn.
(Hint: draw a diagram.)
$48 \mathrm{~m}^{2}$
Nick has made a triangular sign to support his local football team. The sign has a base of 60 cm and a height of 30 cm . Calculate the area of the sign in square centimetres.

$900 \mathrm{~cm}^{2}$

 metres?$0.09 \mathrm{~m}^{2}$

-
\qquad

24

[Composite
area]

$123 \mathrm{~cm}^{2}$

Student comment	Guardian comment/signature	Teacher feedback

Time, temperature and mass 2

Name: \qquad Due date: \qquad .../.

For 1-2, write the temperature.

$\mathbf{3}$
[Temperature
scale]
Colour the thermometer to show $37^{\circ} \mathrm{C}$.

4
[Convert to
Fahrenheit]

5
[Convert to
Celsius]
6
[Convert to
Fahrenheit]
7 Convert the freezing point of water
[Convert to
Celsius]

8
[Convert to
Celsius]

9
[Convert to
Celsius]

[Convert to
Convert $60^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$.
$140^{\circ} \mathrm{F}$
Convert $50^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$.
$10^{\circ} \mathrm{C}$
Convert $90^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$.
$194^{\circ} \mathrm{F}$ $\left(0^{\circ} \mathrm{C}\right)$ to ${ }^{\circ} \mathrm{F}$.
$32^{\circ} \mathrm{F}$
Convert the boiling point of water
$\left(212^{\circ} \mathrm{F}\right)$ to ${ }^{\circ} \mathrm{C}$.
$100^{\circ} \mathrm{C}$
An American first aid book says that normal body temperature is $98.6^{\circ} \mathrm{F}$. How many degrees Celsius is that?
$37^{\circ} \mathrm{C}$
Convert $0^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$.
$-18^{\circ} \mathrm{C}$

Celsius]
Fiona, who lives in Australia, was talking about the weather to her friend Sam in America. The temperature at Fiona's place was $25^{\circ} \mathrm{C}$, whereas it was $59^{\circ} \mathrm{F}$ at Sam's home.

Convert each of the temperatures into the other scale.
$25^{\circ} \mathrm{C}=77^{\circ} \mathrm{F}, 59^{\circ} \mathrm{F}=15^{\circ} \mathrm{C}$
Who was experiencing the warmest weather?
[Compare
temperature
scales]
Fiona

For 13-17, write the best unit of mass (mg, g, kg, t).

13 [Mass units]	A pencil
	g
14 [Mass units]	An elephant
	t
15 [Mass units]	A feather
	mg
16 [Mass units]	3 litres of ice-cream
	kg
17 [Mass units]	An MP3 player
	g
18 [Convert mass units]	Convert 0.764 t to g.
	764000 g
19 [Convert mass units]	Convert 0.47 kg to mg .
	470000 kg
20 [Convert mass units]	Convert 5170 g to t .
	0.00517 t
21 [Mass application]	Brody is allowed only 10 kg of luggage
	on the plane to Darwin. He is taking
	a suitcase $(2 \mathrm{~kg})$, clothes $(4300 \mathrm{~g})$, shoes $(1.6 \mathrm{~kg})$, a tennis racket $(350 \mathrm{~g})$, gifts (1.2 kg) and a book (400 g). Find the total mass. Is it within the 10 kg limit?
	9.85 kg , yes

Kayla's family went on holidays. They left home at 16:30 hours and drove without stopping for 2 hours and 20 minutes. After a 15 -minute break, they drove for another 2 hours and 35 minutes to get to their motel.
22 At what time did the family stop for a [Time break?
application]
18:50 hours or 6:50 pm

24

[Time application]

At what time did they arrive at their destination?

21:40 hours or 9:40 pm
What was the total travelling time, including the break?

5 hours and 10 minutes
At the Pooch Parlour, it took $2 \frac{1}{2}$ hours to wash 5 dogs. The first dog took 28 minutes, the second had longer hair and took 45 minutes, the third took 19 minutes and the fourth 23 minutes.

How long did it take to wash the first four dogs?

115 minutes
How long did it take to wash the fifth dog?

35 minutes

At 12 noon in London, it is 10 pm (the same day) in Sydney. For 27-30, complete the sentence.
27 When it is 10 am in London, the time in [International Sydney is:
time zones]
[International Sydney, it is:
time zones]

8 pm

28 It is 9 pm on Monday in London. In

7 am on Tuesday

5 pm on Thursday

When it is 2 pm in Sydney, the time in London is:

4 am
30 It is 3 am on Friday in Sydney. In
London, it is:
29
[International time zones]
[International
time zones]
\qquad

Student comment	Guardian comment/signature	Teacher feedback

Name: \qquad Due date: \qquad ./.........../ \qquad

At Noonee Valley Racecourse, there are 250 stalls, numbered 1 to 250 . At the beginning of the day, all the stalls are occupied and their gates are closed. Every horse has its own trainer. The first trainer to arrive that morning opens all the gates. The second trainer closes every gate whose number is a multiple of 2 . The third trainer changes the state of every gate whose number is a multiple of 3. (That is, the trainer closes open gates and opens closed gates.) The fourth trainer changes the state of every gate whose number is a multiple of 4 , and so on. After all the trainers have arrived at the racecourse, which stall gates will be open? To find out, answer the
 following questions.
1 Consider the first 20 stalls only. After the second trainer closes every gate whose number is a
[Consider multiple of 2 , which gates will still be open?
a simpler
problem]
2
[Consider
a simpler
problem]
$\underline{1,3,5,7,9,11,13,15,17,19}$
After the second trainer has finished closing stall gates, what is the state of:
a gate 1? \qquad
b gate 2? \qquad

3
[Consider
a Will any other trainer visit gates 1 and 2? \qquad No
After all 250 trainers have arrived, what will be the state of:
a simpler
b gate 1? Open
c gate 2? Closed

4
[Draw a
Set up a table or spreadsheet to record the changing state of the first 20 stall gates as each trainer arrives at the racecourse.
table]
[Use
technology]

5 Which gate numbers in the first 20 will be open:
[Look for a
pattern]

6
[Make a
conjecture]
[Test a conjecture]
[Make a conjecture]
c Now predict all the gate numbers that will be open after all 250 trainers have arrived. $1,4,9,16,25,36,49,64,81,100,121,144,169,196,225$

7
One way to test your prediction would be to extend your table to include all 250 gates and 250 trainers. This would be very time consuming. Another way would be to find the reason behind the pattern you have found.
a For each gate you listed in question 5, write the number of times the gate was visited.
Gate 1 was visited 1 time. Gate 4 was visited 3 times. Gate 9 was visited 3 times. Gate 16 was
visited 5 times.
b What do your answers to part a have in common?
Each gate was visited an odd number of times.

[Make connections
with
mathematical
knowledge]
a after the first 20 trainers have arrived? $1,4,9,16$
b after all 250 trainers have arrived? $\quad 1,4,9,16$
(Hint: which trainer is the last to visit any of these gates?) Trainer 20
c Notice that the gate numbers form a pattern. Describe this pattern.
The numbers are the first four square numbers, or they increase by $3,5,7$.
a Use the pattern you found to predict the next gate number that will be open after all 250 trainers have arrived.

25
b Extend your table to test your prediction. Was it correct? Answers may vary.

How does the number of visits relate to the number of factors of a particular gate number?
For each gate, the number of visits is the same as the number of factors of the gate number.
b Why does this mean that only gates $1,4,9,16, \ldots$ will be open when all the trainers have arrived?

All other numbers have pairs of factors, so each pair opens and closes a gate. Square numbers have one 'repeated' factor, which gives an odd number of factors. So these square-numbered gates are visited an odd number of times, leaving them open.
\qquad

Student comment	Guardian comment/signature	Teacher feedback

© Macmillan Education Australia 2009
ISBN: 9781420229233

Variables in Excel

Name: \qquad Due date: \qquad ./.........../ \qquad

Microsoft Excel can be used to create tables of values based on rules or formulas. This can save a lot of time when you are using a complex formula or a large number of values.
1
[When entering the formula, you can click on cell B2 instead of typing 'B2'. Remember that Excel uses * for
multiply and / for divide.] 2

Set up the following table in a new spreadsheet. Remember that Excel formulas use cell references such as B2 or B3 rather than variable names such as n or m. If you have entered the formula correctly, cell B3 will show a value of 9 . That is, when $n=1, m=9$.

	A	B	C	D	E	F
1	$\boldsymbol{m}=\mathbf{5}+\mathbf{4 n}$					
2	\mathbf{n}	1	2	3	4	5
3	\mathbf{m}	$=5+4^{*} \mathrm{~B} 2$				

Now we will investigate what happens when we use the formula for other values of n.

- Select cell B3 and drag the fill handle \square across to F3.
- Check that the new values of m are correct.
- To change between formulas and values in a spreadsheet, we press CTRL+ . Do this now to display the formulas in row 3.

1	A	B	C	D	E	F
	$m=5+4 n$					
2	n	1	2	3	4	5
3	m	$=5+4 *$ B 2	$=5+4 * C 2$	$=5+4 *$ D 2	$=5+4 * E 2$	$=5+4 * F 2$

What pattern do you see in the formula row? Why isn't the formula the same in each cell?
The cell references go up by 1 because each formula relates to the value in the cell above it.

3 A tables of values can be used to convert measurements from one scale to another; for example, from feet to metres or from pounds to kilograms. You probably know that, in the United States, the Fahrenheit scale is used for temperatures. To change a temperature in degrees Celsius (${ }^{\circ} \mathrm{C}$) to degrees Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$, you can use the formula $F=\frac{9 C}{5}+32$.

- Set up the following conversion table in a new spreadsheet.

	A	B
1	Celsius $\left({ }^{\circ} \mathbf{C}\right)$	Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$
2	0	$=9^{*} \mathrm{~A} 2 / 5+32$
3	1	

- Highlight cells A2 and A3 and drag the fill handle down to extend the table to $100^{\circ} \mathrm{C}$.
- Drag the formula in B2 down to convert the temperatures to Fahrenheit. To show whole numbers, select the cells, right-click and select Format Cells. Select Number from the Number menu and enter ' 0 ' for number of decimal places.

Use your table to convert the following temperatures to Fahrenheit.
a $\quad 0^{\circ} \mathrm{C}=$ \qquad $32^{\circ} \mathrm{F}$
b $15^{\circ} \mathrm{C}=$ \qquad $59^{\circ} \mathrm{F}$
c $40^{\circ} \mathrm{C}=\underline{104^{\circ} \mathrm{F}}$
d $100^{\circ} \mathrm{C}=\underline{212^{\circ}} \mathrm{F}$
Now use your table of values 'backwards' to convert $100^{\circ} \mathrm{F}$ to Celsius.
$38^{\circ} \mathrm{C}$
Find the temperature that has the same number value in both scales. Explain the method you used.
$-40^{\circ} \mathrm{C}=-40^{\circ} \mathrm{F}$
Suitable methods include extending the table and 'guess, check and improve'.
Use a spreadsheet to create a weight conversion table for kilograms to pounds.
Include values from 1 to 200 kilograms and give the conversions correct to 1 decimal place.
(Hint: 1 kilogram = 2.2 pounds)

Student comment	Guardian comment/signature	Teacher feedback

